Malaria

WRAIR- GEIS 'Operational Clinical Infectious Disease' Course
Acknowledgments

COL Pete Weina, MD, PhD
Chief, Department of Research Programs
Walter Reed National Military Medical Center

COL Arthur Lyons, MD, PhD
Deputy Assistant Surgeon General for Force Protection
The Office of the Surgeon General
Disclaimer

The views expressed in this presentation are those of the speaker and authors, and do not reflect the official policy of the Department of Army, Department of Defense, or U.S. Government.
Case

• 23 y/o SM comes to your clinic in CONUS.
• Has had 3 days of chills, fever, sweats, nausea, vomiting, body aches, feeling unwell…
• Really doesn’t want to bother you…but just wanted to come in to get checked out.
What questions do you ask?
Tests

• **You ask:** “Where have you traveled in the last 6 months?”
• **Answer:** “Liberia, HOA, SE Asia.”
• You do a RDT.....negative
• You do a blood smear....
Later….

• He returns 2 days later
• He doesn’t look too good
• On exam
 – VS: 103.3°F, 90/50, 120, 16
 – General: appears sleepy, oriented to name alone, diaphoretic
 – CV: tachycardic
 – Neuro: confused
 – GI: Hepatosplenomegaly, jaundice
 – Lab: Glucose: 20, HCT 15, Cr 2.6, AG 34
 • Should you be worried….very worried?
Now: You see this in the blood smear....
• Malaria is a complex, large global problem

• Current strategies are inadequate

• DoD is making progress towards malaria solutions (drugs and vaccines)

• Multi-pronged efforts are ongoing in the areas of malaria control, elimination, and eradication.
What is Malaria?

• Potentially lethal parasitic disease (*Plasmodium* species)

• Transmitted between humans (reservoir) by mosquitoes (the vector)

• **Initial malaria:** fever, chills, muscle aches, headaches, fatigue, rigors

 ➡️ **ACUTE ILLNESS**

• **Untreated:** severe anemia, kidney failure, coma, convulsions

 ➡️ **DEATH**

• **Survivors:** May become chronic carriers (esp. *P. vivax*)

 ➡️ **ILL HEALTH, LEARNING DISABLED**

 ➡️ **RESERVOIRS OF INFECTION**
History

- Chinese writings (2700 BCE)
- The Eber’s papyrus (1550 BCE)
- Hippocrates (described malaria fevers)
- Greek civilizations affected by “bad air”, the rich summered in the highlands
- Malaria in the United States
 - First military expenditure in 1775 ($300) for quinine to protect Washington’s troops
 - In Civil War (1861-65) 50% white and 80% of black troops w/ malaria annually
The Situation is Dire

- Malaria is a personal tragedy
 - Death in infants and in 1st pregnancies
 - Sickness, long term disability, chronic illness in survivors

- Malaria is a global health tragedy
 - Malaria kills 3,000 children a day
 - Malaria hastens spread of HIV infection**

- Malaria is an economic-political tragedy
 - Major cause of disability adjusted life years (DALYS)
 - Prevents development, especially in Africa
 - A cause and a consequence of poverty

**Abu-Raddad LJ et al. Links Dual infection with HIV and malaria fuels the spread of both diseases in sub-Saharan Africa. Science 2006;314:1603-6
The Global Malaria Problem

• #1 cause of death of young African children

• Malaria is resurgent:
 – More cases now than ever in history

• Inadequate prevention:
 – Bed nets save lives - but not widely used
 – DDT/insecticides save lives – but not adequately used

• Inadequate treatment
 – Poor diagnosis
 – Drug resistance:
 • affordable drugs not effective
 • effective drugs not affordable

• No malaria vaccine yet licensed

Hand of child with severe malaria anemia in the palm of his mother

Child with severe malaria

Source: www2.cedarcrest.edu
Source: cdc.gov
Destabilization Effect

- Malaria (and other diseases) impact critical infrastructures
 - Education, health systems
 - Economic growth
 - Law enforcement, military, politics, family structures
- Disease undermines already weakened nations
 - Vulnerable to extremists/terrorists
- Real global war
 - Needs to be comprehensive
 - Fought on many levels
 - Many fronts
Malaria and Morbidity in the US Military

<table>
<thead>
<tr>
<th>Conflict/Deployment</th>
<th>Year</th>
<th>Morbidity and Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>WWII</td>
<td>1939–1945</td>
<td>600,000 cases mostly in Pacific theater. In some areas of South Pacific malaria rates were 4 cases per person per year</td>
</tr>
<tr>
<td>Korean War</td>
<td>1950–1953</td>
<td>Malaria rate 611/1000/year; 3000 cases in troops returning to US</td>
</tr>
<tr>
<td>Vietnam War</td>
<td>1962–1975</td>
<td>100,000 cases, Hospital admissions 27/1000/year. 1970: 2222 cases (mostly P. vivax) treated in United States</td>
</tr>
<tr>
<td>Somalia</td>
<td>1992–1994</td>
<td>48 cases; 243 cases in forces on return home (P. vivax)</td>
</tr>
<tr>
<td>Nigeria</td>
<td>2001</td>
<td>Special forces 7/300 (2 deaths)</td>
</tr>
<tr>
<td>Afghanistan (OEF)</td>
<td>2001-</td>
<td>Over 400 cases since 2005</td>
</tr>
</tbody>
</table>

“Doctor, this will be a long war if for every division I have facing the enemy I must count on a second division in hospital and a third division convalescing from this debilitating disease!”

General Douglas MacArthur, May 1943 to Colonel Paul F. Russell, MC, the American Army malaria consultant.

Source: en.wikipedia.org
Operational Impact - Liberia, 2003

• 80 of 220 (36%) Marines contracted *P. falciparum* malaria

• 46 required medical evacuation

• 5/80 (6.25%) were severe
 - Requiring ICU admissions
 - Four on ventilators

• Key problems:
 - Non-compliance
 - Inability to make the diagnosis
 - Cost: $1.2M
Vector: Anopheline Mosquitoes

- 50->80 species capable of transmission
- <40 responsible for majority of transmission
- Female requires blood meals for egg broods

Source: news.softpedia.com
Anopheline Mosquitoes

• Life cycle – 7 to 20 days (egg to adult)
 – egg -> larva -> pupa -> adult
 – Females mate once and lay 200-1000 eggs in 3-12 batches over a lifetime
 – Find their host by chemical (CO₂) and physical stimuli (heat)
 • Smokers
 – Average life span of mosquito < 3 weeks

• Malaria development – 7 to 12 days
 – Each male & female gametocyte produce >10,000 sporozoites
Transmission

• Tropical and subtropical areas
 – Sub-Saharan Africa, India, Oceania considered endemic areas
 – Does not occur in all parts of endemic countries all the time (deserts, high altitude, cold seasons)

• Transmission-favorable factors
 – Anopheles mosquito niche
 – Temperature (CRITICAL)
 • Below 20°C (68°F), *P. falciparum* cannot complete growth in the mosquito → no transmission
 • The warmer the region, the more intense/constant transmission is
Transmission

• Temperate areas (e.g. Western Europe, USA) have eliminated malaria
 – Economic development
 – Public health measures
• Reintroduction is a constant risk
Transmission in the US

- Mosquito-borne
- “Airport” (imported mosquitoes)
- Congenital
- Transfusion
 - 1 year deferral
 - Donors who traveled to an endemic malarious area who remain free of symptoms for 1 year
 - 3 year deferral
 - Donors who lived in endemic malarious area who remain free of symptoms for 3 years after leaving
 - Donors with malaria diagnoses need to be asymptomatic for 3 years after becoming asymptomatic
Vector Websites

VectorMap

Know the vector, know the threat

MosquitoMap

http://www.vec torsormap.org/
Malaria Life Cycle

Key Point: most blood-stage schizonticidies are suppressive—this is why prophylaxis is continued upon redeployment

Source: NEJM
Definitive host mosquito

Ingests 3 ul of blood
With 100-300 gametes

Gametocytes
Viable for 28 days

Oocysts on gut wall

28 days
In mosquito

100’s
Sporozoites

Within hours
invades 1-2
liver cells

Plasmodium
Life Cycle

48-72 hrs

1,000’s released
Merozoites in liver for seven to 10 days. P. vivax & ovale hypnozoite for Months.

Clinical signs and symptoms in erythrocytic stages of ring, trophozoite and schizont
14 sporozoites successfully invade hepatocytes

20,000 merozoites released per sporozoite: 280,000 total

10-fold multiplication in 48 h; parasite no. given by $280,000 \times 10^{(life~cycles)}$

Blood-film diagnosis at 50,000,000 parasites; 4-5 days later (i.e., 2-2.5 life cycles)

Source: JID 2005;191:625
Malaria Parasites and Their Life Cycles

• Five human forms of malaria
 – *Plasmodium vivax* (benign “tertian”)
 • 48h cycle, young RBCs (reticulocytes), worldwide
 – *Plasmodium malariae* (“quartan”)
 • 72h cycle, older RBCs, worldwide
 – *Plasmodium ovale* (“ovale tertian”)
 • 48h cycle, young RBCs, Africa
 – *Plasmodium falciparum* (“malignant tertian”)
 • 24-48h cycle, all RBCs, Tropical regions
 – *Plasmodium knowlesi*
 • 24h cycle, probably all RBC’s, Southeast Asia (Malaysia/Indonesia/Borneo)
“Recurrent Infections”

- **Relapse**
 - Hypnozoite stage of *P. vivax* and *P. ovale*
 - Months or years later
 - May be impossible to completely prevent
- **Recrudescence**
 - Incomplete treatment or partially effective host immune responses
 - Most frequent *P. falciparum* - due to drug resistance
- **Reinfection**
 - Most frequent with *P. falciparum* - intense transmission

Source: CAPT Claggett, USN
Symptoms/Signs

• **Incubation period 7-30 days**

• Classical malaria attack lasts 6-10 hours
 – Cold stage (sensation of cold, shivering)
 – Hot stage (fever, headaches, vomiting; seizures in young children)
 – Sweating stage (can be diaphoretic, more commonly a combination of fever, chills, sweats, headaches, nausea and vomiting, body aches, malaise.)

• Physical findings
 – elevated temperatures, sweating, weakness, enlarged spleen, mild jaundice, hepatomegaly, tachypnea
Classically (but infrequently observed) the attacks occur every second day with the "tertian" parasites (\textit{P. falciparum}, \textit{P. vivax}, and \textit{P. ovale}) and every third day with the "quartan" parasite (\textit{P. malariae}).
Pyrogenic density is parasite density at time of fever.

- *P. vivax* pyrogenic density is 100 parasites/μl.
- *P. falciparum* pyrogenic density ranges from 0 to 10,000/μl in non-immunes.
- Semi-immune can have up to 100,000 par/μl without fever.
Plasmodium knowlesi

- **BLUF:** Nasty one
 - Looks like a benign species, but as deadly as Pf.
- Simian species of malaria naturally infecting macaques in Southeast Asia
 - Human cases reported first in Borneo
 - Subsequent cases in Malaysia, Singapore, and Philippines
- Resembles human species by microscopy
 - *P. malariae* (affects any age cell like *P. falciparum*)
- 24 hour replication cycle
 - Can cause severe and fatal infections
Severe Malaria

Severe malaria is a medical emergency and should be treated **urgently and aggressively**.

Multi-organ failures or abnormalities in the patient's blood or metabolism.
Severe Malaria

- Cerebral malaria
- Severe anemia due to hemolysis
- Hemoglobinuria due to hemolysis
- Acute respiratory distress syndrome, can even after patient is responding to treatment
- Abnormalities in blood coagulation
- Low blood pressure caused by cardiovascular collapse
- Acute kidney failure
- Hyperparasitemia (>5% RBCs)
- Metabolic acidosis
- Hypoglycemia (can also occur in pregnant women with uncomplicated malaria, or after treatment with quinine)
Clinical Complications of Malaria

- **P. falciparum**
 - Cerebral coma (kids)
 - Anemia (s/p recurrent)
 - Pulmonary Edema
 - Renal Failure
 - Shock
 - Lactic acidosis
 - Hypoglycemia
 - Tropical splenomegaly syndrome
 - Hepatosplenomegaly, anemia, skin/respiratory infections
 - Pregnancy
 - Maternal death
 - Stillbirth
 - Low birth weight
 - Anemia

- **P. vivax (ovale)**
 - Splenic rupture
 - Anemia (mild)
 - Debilitating fever
 - Higher TNF-α per parasite

- **P. malariae**
 - Immune complex
 - Glomerulonephritis → nephrotic syndrome

• Hepatosplenomegaly, anemia, skin/respiratory infections
Malaria Complications

- Nephrosis/Edema
- Tropical splenomegaly (Hyperreactive Malarial Syndrome)

Source: www.encyclopedia.com
Emedicine.medscape.com
Diagnosis

- Gold standard – Giemsa thick & thin smears
 - Species and parasite density determined
 - Labor intensive, modest cost
 - False negative circumstances
 - Parasites not present in circulation ("Sequestration"): *P. falciparum*

- False positive circumstances
 - Parasites seen may not be the cause of fever in endemic areas – bacteremia (prominently Salmonella sp.) common

- In highly endemic areas, clinical diagnoses made
Levels of Parasitemia in Different Patient Groups

<table>
<thead>
<tr>
<th></th>
<th>Parasitemia</th>
<th>Parasites / µL of blood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive thick smear</td>
<td>0.0001-0.0004%</td>
<td>5-20</td>
</tr>
<tr>
<td>Naïve patients with symptoms (below this level)</td>
<td>0.002%</td>
<td>100</td>
</tr>
<tr>
<td>Emergency room patients and travelers</td>
<td>0.2%</td>
<td>10,000</td>
</tr>
</tbody>
</table>
Plasmodium vivax
Plasmodium ovale
Plasmodium malariae
Plasmodium knowlesi
BinaxNOW® Malaria (Alere, Inc.)

- FDA-cleared rapid (<15 min) diagnostic test
- Non-microscopic
- Single reagent
- Minimally-trained operator
- Environmentally robust
- RDTs will **NOT** replace malaria microscopy
 - Confirmatory test for species, parasite density
 - Back-up to rule out inaccurate results
Parasite Growth in the Blood

>Log increase in parasites per 48-hour cycle (for *P. falciparum*)

<table>
<thead>
<tr>
<th>Threshold</th>
<th>Parasitemia</th>
<th>Parasites/ul</th>
<th>Parasite burden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert Microscopy</td>
<td>0.0005%</td>
<td>20-50</td>
<td>10^8 parasites</td>
</tr>
<tr>
<td>Symptoms in non-immunes</td>
<td>0.002%</td>
<td>100</td>
<td>10^9 parasites</td>
</tr>
<tr>
<td>Malaria RDT</td>
<td>0.005%</td>
<td>100-1000</td>
<td>10^{9-10} parasites</td>
</tr>
<tr>
<td>Severe malaria</td>
<td>2%</td>
<td>100,000</td>
<td>10^{12} parasites</td>
</tr>
<tr>
<td>Death</td>
<td>10%</td>
<td>500,000</td>
<td>10^{13} parasites</td>
</tr>
</tbody>
</table>
Prepatent & Incubation Periods (parasites in detectable in blood by microscopy vs. illness)

<table>
<thead>
<tr>
<th>Species</th>
<th>Prepatent Period</th>
<th>Incubation Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. falciparum</td>
<td>11 - 14 days</td>
<td>8 - 15 days</td>
</tr>
<tr>
<td>P. vivax</td>
<td>11 - 15 days</td>
<td>12 - 20 days</td>
</tr>
<tr>
<td>P. ovale</td>
<td>14 - 26 days</td>
<td>11 - 16 days</td>
</tr>
<tr>
<td>P. malariae</td>
<td>21 - 28 days</td>
<td>18 - 40 days</td>
</tr>
<tr>
<td>P. knowlesi</td>
<td>11 days?</td>
<td>10-12 days?</td>
</tr>
</tbody>
</table>
RDT Limitations

- Decreased sensitivity at lower parasitemias
- Temp and humidity both degrade the nitrocellulose strip’s ability to transport the blood and buffer solution
- Faint positive test lines can be hard to see
- Cannot split a box when only need small numbers. Sold 25 cards per box, but you only get one bottle of buffer/lysing agent.
BinaxNOW® Sensitivity - *P. falciparum*

<table>
<thead>
<tr>
<th>Parasitemia (per µL)</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>>5000</td>
<td>99.7%</td>
</tr>
<tr>
<td>1000-5000</td>
<td>99.2%</td>
</tr>
<tr>
<td>500-1000</td>
<td>92.6%</td>
</tr>
<tr>
<td>100-500</td>
<td>89.2%</td>
</tr>
<tr>
<td>0-100</td>
<td>53.9%</td>
</tr>
<tr>
<td>Overall</td>
<td>95.3%</td>
</tr>
<tr>
<td>Specificity</td>
<td>94.2%</td>
</tr>
</tbody>
</table>

Official performance data from manufacturer
BinaxNOW® Sensitivity - *P. vivax*

<table>
<thead>
<tr>
<th>Parasitemia (per µL)</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>>5000</td>
<td>93.5%</td>
</tr>
<tr>
<td>1000-5000</td>
<td>81.0%</td>
</tr>
<tr>
<td>500-1000</td>
<td>47.4%</td>
</tr>
<tr>
<td>100-500</td>
<td>23.6%</td>
</tr>
<tr>
<td>0-100</td>
<td>6.2%</td>
</tr>
<tr>
<td>Overall</td>
<td>68.9%</td>
</tr>
<tr>
<td>Specificity</td>
<td>99.8%</td>
</tr>
</tbody>
</table>

Official performance data from manufacturer
“Good doctors are useless without good discipline. More than half the battle against disease is fought not by doctors, but by regimental officers. It is they who see that the daily dose of mepacrine is taken, that shorts are never worn, that shirts are put on and sleeves turned down before sunset. . . I therefore had surprise checks of whole units, every man being examined. If the overall result was less than 95% positive, I sacked the commanding officer. I only had to sack three; by then the rest had got my meaning.”

General Slim, Burma Campaign, WW II
(Under General Slim, the malaria rate in troops decreased from 12 per 1,000/day to 1 per 1,000/day)
Treatment Algorithm (TG336)

Patient ill with fever > 101°F and is/has been in a malarious area.

YES

MUST rule out malaria. Start empiric treatment if malaria is suspected. Consider rapid medical evacuation.

YES

Perform blood smears or rapid diagnostic test (RDT). If initial smear or RDT is negative, repeat in 8-12 hours. If still negative, repeat a third time 8-12 hours later. *Only after three properly spaced diagnostic tests should one exclude a diagnosis of malaria.* Negative tests that are clinically considered possible false-negative should be treated even as testing continues. If accurate and reliable diagnostic testing is not available within 1-2 hours OR if clinical symptoms worsen during serial testing and no alternative diagnosis has been confirmed, empiric treatment for chloroquine-resistant falciparum malaria is recommended.

YES

If smear or RDT positive, treat (see Treatment section). Report confirmed and empirically treated cases to preventive medicine authorities.

Particularly non-Pf
Jesuit’s Bark, due to alkaloids, is the most celebrated specific remedy for all forms of malaria. It is obtained from several species of the genus Cinchona, of the order Rubiaceae.

1630: Countess Chinchon, the wife of Spanish Viceroy, was saved from terminal malaria by bark powders recommended by the Jesuits of Saint Paul’s College in Lima, Peru.

1632: Jesuit Barnabe’ de Cobo (1582-1657) rendered important services in the exploration of Mexico and Peru. In his capacity of procurator of the Peruvian province of his order, he brought the bark from Lima to Spain, and afterwards to Rome and other parts of Italy.

Source: gallica.bnf.fr
Roles of Antimalarial Drugs

<table>
<thead>
<tr>
<th></th>
<th>Prophylaxis</th>
<th>Anti-relapse (Pv or Po liver stage)</th>
<th>Treatment (asexual blood stage)</th>
<th>Anti-transmission (gametocyte/sporogony)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primaquine</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Tafenaquine</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Artemisins</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Halofantrine</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Fansidar</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Quinine</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Atov/prog</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Maybe</td>
</tr>
<tr>
<td>Chloroquine</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Doxycycline</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Mefloquine</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Roles of Antimalarial Drugs

<table>
<thead>
<tr>
<th></th>
<th>Prophylaxis</th>
<th>Anti-relapse (Pv or Po liver stage)</th>
<th>Treatment (asexual blood stage)</th>
<th>Anti-transmission (gametocyte/sporogony)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primaquine</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Tafenaquine</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Artemisin</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Halofantrine</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Fansidar</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Quinine</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Atov/prog</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Maybe</td>
</tr>
<tr>
<td>Chloroquine</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Doxycycline</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Mefloquine</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Roles of Antimalarial Drugs

<table>
<thead>
<tr>
<th></th>
<th>Prophylaxis</th>
<th>Anti-relapse (Pv or Po liver stage)</th>
<th>Treatment (asexual blood stage)</th>
<th>Anti-transmission (gametocyte/sporogony)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primaquine</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Tafenaquine</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Artemisins</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Halofantrine</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Fansidar</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Quinine</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Atov/prog</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Maybe</td>
</tr>
<tr>
<td>Chloroquine</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Doxycycline</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Mefloquine</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Antimalarial Drugs</td>
<td>Prophylaxis</td>
<td>Anti-relapse (Pv or Po liver stage)</td>
<td>Treatment (asexual blood stage)</td>
<td>Anti-transmission (gametocyte/sporogony)</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------</td>
<td>-----------------------------------</td>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Primaquine</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Tafenaquine</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Artemisin</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Halofantrine</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Fansidar</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Quinine</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Atov/prog</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Maybe</td>
</tr>
<tr>
<td>Chloroquine</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Doxycycline</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Mefloquine</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Plasmodium falciparum becomes Resistant to Antimalarial Drugs - Continuous New Drug Development and Licensure is Required

<table>
<thead>
<tr>
<th>Drug</th>
<th>Introduced</th>
<th>First Reported Resistance</th>
<th>Difference (Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quinine</td>
<td>1632</td>
<td>1910</td>
<td>278</td>
</tr>
<tr>
<td>Chloroquine</td>
<td>1945</td>
<td>1957</td>
<td>12</td>
</tr>
<tr>
<td>Proguanil</td>
<td>1948</td>
<td>1949</td>
<td>1</td>
</tr>
<tr>
<td>Sulfadoxine-pyrimethamine</td>
<td>1967</td>
<td>1967</td>
<td>0</td>
</tr>
<tr>
<td>Mefloquine</td>
<td>1977</td>
<td>1982</td>
<td>5</td>
</tr>
<tr>
<td>Malarone</td>
<td>1997</td>
<td>2002</td>
<td>5</td>
</tr>
</tbody>
</table>

WRAIR support for US FDA approval
Multi-Drug Resistant *P. falciparum* Malaria Means that Effective Drugs are not Affordable

In 1900; 53% land area malarious; 890,000,000 people at risk
In 2002; 27% land area malarious; 3,400,000,000 people at risk

Malaria Treatment (Adult doses)

- **Intravenous treatment of severe malaria**
 - Quinidine gluconate:
 - Load with 10 mg/kg in 250 cc over 1-2 hours
 - Maintenance dose of 0.2 mg/kg/min for 72 hours
 - Artesunate **(treatment IND)**: 2.4 mg/kg at 0, 12, 24, 48, and 72 hours

- **Oral treatment of uncomplicated *P. falciparum* malaria**
 - Proguanil / atovaquone (Malarone®): 4 tabs daily for 3 days
 - **Artemether-lumefantrine (Coartem®):**
 - 4 tabs x 1, followed by 4 tabs at 8 hours, then 4 tabs twice daily for 2 days (6 total doses)
 - Quinine sulfate + doxy or PS
 - Mefloquine (Lariam®): 1250 mg (5 tabs) x 1
 - Chloroquine (Aralen®): **(DO NOT USE IN AFRICA OR ASIA)**
 - 1 gram (600 mg base) loading dose
 - 500 mg (300 mg base) in 8 hours, 24 hours, and 48 hours

- **Available and can be used (Rx adjuncts)**
 - Doxycycline, clindamycin, azithromycin

- **Radical cure of relapsing malaria**
 - Chloroquine + primaquine
Oral vs. Intravenous Treatment

- Parasitemia >5%
- Unable to tolerate oral medications
- Signs of end-organ damage
 - Renal failure
 - Pulmonary edema/respiratory failure
 - Coma
 - Severe anemia (transfusion)

If yes to any of the above, then IV
CDC’s Compassionate Use IND

- WRAIR produced 1,000 vials of the “clinical lot” for compassionate use IV Artesunate (AS)
- CDC has a Compassionate Use IND for IV AS
 - Compassionate Use IND went into effect on 21 June 2007
 - Complete cross-reference to U.S. Army IND for IV AS
 - Administered by Domestic Response Unit & Malaria Branch
 - Announcement Made on 03 August 2007 in MMWR

- Now released to Canadians, and will be made available in Australia, EU, and elsewhere
 - Forward supply located at LRMC
<table>
<thead>
<tr>
<th>DRUG</th>
<th>PROBLEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artemisinin</td>
<td>Recrudescence, Neurotoxicity</td>
</tr>
<tr>
<td>Atovaquone</td>
<td>Resistance</td>
</tr>
<tr>
<td>Azithromycin</td>
<td>Limited efficacy</td>
</tr>
<tr>
<td>Chloroquine</td>
<td>Resistance</td>
</tr>
<tr>
<td>Doxycycline</td>
<td>Phototoxicity, GI intolerance</td>
</tr>
<tr>
<td>Fansidar</td>
<td>Resistance, Allergic Rxns</td>
</tr>
<tr>
<td>Halofantrine</td>
<td>Cardiotoxicity</td>
</tr>
<tr>
<td>Mefloquine</td>
<td>Resistance, Psychiatric effects</td>
</tr>
<tr>
<td>Primaquine</td>
<td>Narrow Therapeutic Index</td>
</tr>
<tr>
<td>Proguanil</td>
<td>Resistance, Mouth ulcers</td>
</tr>
<tr>
<td>Quinidine gluconate</td>
<td>Going off the market?</td>
</tr>
<tr>
<td>Quinine</td>
<td>Resistance, Tinnitus</td>
</tr>
</tbody>
</table>
Evidence of Artemisinin-Resistant Malaria in Western Cambodia

Figure 1. Parasite Density, Parasite-Clearance Time, and 50% Inhibitory Concentration (IC₅₀) among Patients Receiving Artesunate, According to Clinical Outcome.

Panel A shows the parasite-reduction curves for the 56 patients who were cured, the 2 patients classified as having artesinin-resistant infections, and the 2 with drug failures (i.e., patients who had recrudescence but who were not classified as having artesinin-resistant infection, since the drug level was inadequate). The data points and horizontal I bars denote the means and standard errors. Panel B shows the parasite-clearance times in the artemisunate group, as compared with the IC₅₀ for dihydroartesinin (R=0.31, P=0.03). Orange circles indicate patients whose infection was classified as artesinin-resistant, and blue squares patients in whom treatment failed but whose infection was not classified as resistant.
Prevention

• Avoid outbreaks
 – Realistic, given mission
• Awareness of peak exposure times/places
 – Night-feeders, geographic distribution
• Appropriate clothing
 – Long-sleeved shirts, long pants, boots, and hats
• Bed nets
• Insecticides
 – DEET, Picaridin, OLE/PMD (Repel, Off!), IR3535 (Skin So Soft Bug Guard Plus Expedition and SkinSmart).
• Chemoprophylaxis
• Vaccines
Sleeping under insecticide-treated bed nets can reduce overall child mortality by 20%.

World Malaria Day
April 25, 2013.

Figure: Pregnant woman sitting in front of her long-lasting insecticide treated net.

Sources: theguardian.com
Childrensprize.org
ITNs – Insecticide Treated Nets

- ITNs versus no nets // protective effect
 - 50% reduction in malaria attacks
 - 45% reduction in severe malaria attack
 - 17% reduction in death

- Additional benefits
 - Improved maternal health & hematocrits
 - Improved infant health & birth weights

- Cost: ~$6
- Cost effective: Yes
- Usage: Less than 10% of children at risk

- Issues:
 - Too expensive for poor users to purchase
 - Requires retreatment with insecticide
 - Requires repair
 - Requires education to promote use

Lengeler C. Insecticide-treated bed nets and curtains for preventing malaria. Cochrane Database Syst Rev. 2004;(2):CD000363.
Indoor Residual Spraying (IRS)
DDT Use and Cumulative Malaria Cases in South America

House Spray Rates, 1965-92, and Cumulative Malaria Cases, pre- vs. post-1979
(Brazil, Colombia, Ecuador, Peru, Venezuela)

Decreasing DDT use
Increasing malaria cases

Chemoprophylaxis

• Consulting for traveler
 – Can do anything that works.
 – Traveler can take medical advice, or not.

• Force Health Protection
 – Prescribed meds must have FDA indication for use
 – Malaria Chemoprophylaxis limited to 3 meds
 • Doxy
 • Mefloquine
 • Malarone

Source: CAPT Claggett, USN
<table>
<thead>
<tr>
<th>Drug</th>
<th>Tablet Size</th>
<th>Dose</th>
<th>Start (pre-deploy)</th>
<th>Stop (re-deploy)</th>
<th>Disadvantages</th>
<th>Pregnancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malarone (Atovaquone/Proguanil)</td>
<td>250mg/100mg</td>
<td>One tablet daily</td>
<td>1-2 days</td>
<td>7 days</td>
<td>Expensive, no if Cr Cl <30 ml/min, must be taken with food</td>
<td>No</td>
</tr>
<tr>
<td>Doxycycline</td>
<td>100mg</td>
<td>100mg daily</td>
<td>1-2 days</td>
<td>4 weeks</td>
<td>Photosensitivity, gastritis/esophagitis (must give with liquid, full stomach, upright for 30 minutes), vaginitis</td>
<td>No</td>
</tr>
<tr>
<td>Mefloquine</td>
<td>250mg</td>
<td>250mg weekly</td>
<td>3 wks preferable, 1-2 OK</td>
<td>4 weeks</td>
<td>Resistance in SE Asia, Black box for depression/neurotoxicity, cardiac conduction abnormalities</td>
<td>Yes</td>
</tr>
<tr>
<td>Chloroquine</td>
<td>500mg (300mg base)</td>
<td>500mg weekly</td>
<td>1 week</td>
<td>4 weeks</td>
<td>Resistance, pruritus in dark-skinned persons, rare blood dyscrasias, psoriasis, hx of psychosis, prolonged QT, rare retinopathy</td>
<td>Yes</td>
</tr>
<tr>
<td>Primaquine</td>
<td>26.3mg (15mg base)</td>
<td>30mg base</td>
<td>1 day</td>
<td>7 days</td>
<td>G6PD, food (gastric irritation), methemoglobinemia</td>
<td>No</td>
</tr>
<tr>
<td>Primaquine</td>
<td>26.3mg (15mg base)</td>
<td>30mg base</td>
<td>Protection against late relapse Pv/Po</td>
<td>Total of 14 days (6mg/kg total dose)</td>
<td>G6PD, food (gastric irritation), methemoglobinemia</td>
<td>No</td>
</tr>
</tbody>
</table>

Adapted from Freedman D, NEJM 2008
Chemoprophylaxis

- Malarone
- Doxycycline
- Mefloquine-if you can’t tolerate the first 2 and not in SE Asia
- Chloroquine-few areas where Pf is sensitive
- Primaquine-short duration

Table 1. Relative Risk of Malaria among Travelers, 2000 through 2002.*

<table>
<thead>
<tr>
<th>Region Visited</th>
<th>Relative Risk (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very-low-risk area†</td>
<td>1.0</td>
</tr>
<tr>
<td>Caribbean</td>
<td>3.8 (1.9–7.5)</td>
</tr>
<tr>
<td>North Africa</td>
<td>6.9 (3.6–13.3)</td>
</tr>
<tr>
<td>South America</td>
<td>8.3 (4.9–13.9)</td>
</tr>
<tr>
<td>Southeast Asia</td>
<td>11.5 (8.3–15.9)</td>
</tr>
<tr>
<td>Central America</td>
<td>37.8 (24.0–59.6)</td>
</tr>
<tr>
<td>South Asia</td>
<td>53.8 (37.4–77.4)</td>
</tr>
<tr>
<td>Oceania</td>
<td>76.7 (50.8–115.9)</td>
</tr>
<tr>
<td>Sub-Saharan Africa</td>
<td>207.6 (164.7–261.8)</td>
</tr>
</tbody>
</table>

* Approximate relative risks were based on 1140 cases of malaria among travelers in the GeoSentinel database, with areas visited as numerators and tourist arrivals in that region (according to World Tourism Organization data) as estimates for denominators. Adapted from Leder et al.†

† Very-low-risk areas were Europe, Northeast Asia, Australia, New Zealand, North America, and the Middle East.

Source: NEJM
DoD Antimalarial Drug Program
The Biggest Little Drug Company in the World

- Filed 63 IND’s with US FDA
 - Chloroquine
 - Primaquine
 - C-P Tablets
 - Mefloquine
 - Doxycycline
 - Halofantrine
 - Fansidar
 - Malarone
 - IV Artesunate
Vaccines

• No licensed vaccines yet

• RTS,S/AS01
 – Glaxo-Smith-Kline (GSK) + PATH Malaria Vaccine Initiative (MVI)
 – Specific for *P. falciparum*
 – Recently completed Phase 3 trials
 • 15,460 infants and young children
 • 2 cohorts: infants (6-14 weeks; receive 3 doses of vaccine at 6, 10, 14 weeks with normal childhood vaccines); 5-17 month olds
Vaccines

• Results (efficacy)
 – 5-17 months at first immunization: 55% reduction of all malaria, 47% reduction against severe malaria over 12 months
 – 6-14 weeks: 33% (all malaria), 37% (severe malaria) over 12 months
 – 5-17 months (after 18 months follow up): 40-77%, 11/11 sites
 – 6-14 weeks (after 18 months follow up): 40-77%, 4/11 sites
 – Post booster (0,1,2,20 months schedule) at 18 months
 • 5-17 months: 36% (all malaria), 32% (severe malaria, anemia, malaria hospitalizations, all-cause hospitalizations)
 • 6-14 weeks (0,1,2 month schedule) at 18 months: 18%
 – With month 20: 26%
 – Severe malaria: 0%
Controversies in Malaria

• Prophylaxis… drug to use?
 – Mefloquine (probably not) vs. Malarone vs. Doxycycline

• Prophylaxis… to do or not?
 – Short-term vs. Long-term Deployments

• Prophylaxis… duration?
 – Continuous vs. Interrupted

• RDTs…
Malaria Take Home Points

• Malaria continues to evolve, not just in resistance, but in new species

• Malaria is as important a consideration for force health protection today as ever

• Malaria is not just a force health protection issue, but a strategic stability operations consideration in the global war on terrorism

• We have more tools today than ever, but we can lose them at any time and we must understand and respect their limitations
Fighting Malaria

• Requires expensive, sustained efforts

• Medical facilities are not equipped to quickly and accurately diagnose and effectively treat malaria

• Effective control efforts if subsidized and applied
 – Indoor Residual Spraying (IRS) with DDT - saves lives
 – Insecticide Treated Bed Nets (ITNs) - save lives
 – Artemisinin combinations treatment – saves lives
 – Improved diagnosis – use expensive drugs for those that need it
 – World is waiting for a malaria vaccine

• Eradication requires multiples efforts and multiple solutions
QUESTIONS?

USAPHC TG 336

Malaria
Field Guide
The Prevention, Diagnosis and Treatment of Malaria in U.S. Africa Command (USAFRICOM)

USAPHC TG 336. Approved for public release; distribution is unlimited.

OCID course 2015
Rapid Diagnostic Tests

- FDA cleared
 - BinaxNow® Malaria, Alere

- Reliability
 - False negatives – Prozone Effect
 - Hyperparasitemia – too much antigen
 - HRP-2 assays (16/17) most affected; pLDH and aldolase not affected

- Follow-up
 - FDA ‘clearance’ Labeling – what does it actually say? (need for microscopy confirmation)
Schematic of an MRDT. On one end of the nitrocellulose strip, one or two indicator-labeled antibodies, one specific for each target antigen, are placed.